utility-scripts/glucometer_graphs.py

762 lines
27 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''Utility to convert data from a glucometer into charts.'''
__author__ = 'Timothy Allen'
__email__ = 'tim@treehouse.org.za'
__license__ = 'MIT'
# TODO: comments -- unicode
# TODO: prettify
# TODO: weekly graph with each day's figures as a different-coloured line
# TODO: verify either set of units (mmol,mg/dl) works with the data
import argparse
import csv
import datetime as dt
from matplotlib import rcParams
from matplotlib.figure import Figure
from matplotlib.backends.backend_pdf import FigureCanvasPdf as FigureCanvas
from matplotlib.backends.backend_pdf import PdfPages as FigurePDF
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
from matplotlib import dates as mdates
from matplotlib.patches import Circle, PathPatch
from matplotlib.path import Path
from matplotlib import ticker as mticker
import numpy as np
import re
from scipy import interpolate
from scipy.special import binom
import sys
import pprint
# Constants for units
UNIT_MGDL = 'mg/dL'
UNIT_MMOLL = 'mmol/L'
VALID_UNITS = [UNIT_MGDL, UNIT_MMOLL]
# When averaging, set the period to this number of minutes
INTERVAL = 15
# Maximum gluclose value to display (TODO: mmol/mg)
GRAPH_MAX = 21
# Set colour for below-target maxmins
RED = '#d71920'
# Set colour for above-target maxmins
YELLOW = '#f1b80e'
# Set colour for graph lines
BLUE = '#02538f'
# Set colour for median glucose box
GREEN = '#009e73'
# Set colour for median A1c box
BOXYELLOW = '#e69f00'
def main():
if sys.version_info < (3, 2):
raise Exception(
'Unsupported Python version, please use at least Python 3.2')
pp = pprint.PrettyPrinter(depth=6)
args = parse_arguments()
''' This could be done directly from glucometerutils instead of via CSV '''
with open(args.input_file, 'r', newline='') as f:
rows = from_csv(f)
for row in rows:
row = parse_entry(row, args.icons)
''' Fill in gaps that might exist in the data, in order to smooth the curves and fills '''
''' We're using 8 minute gaps in order to have more accurate fills '''
rows = fill_gaps(rows, interval=dt.timedelta(minutes=10))
''' Calculate the days and weeks in which we are interested '''
''' Note that trim_weeks should be adjusted based on the interval passed to fill_gaps() '''
(days, weeks) = list_days_and_weeks(rows, trim_weeks=300)
totalweeks = sum([len(weeks[y]) for y in weeks])
totaldays = len(days)
''' Set some defaults '''
rcParams['font.size'] = 8
rcParams['axes.titlesize'] = 12
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Calibri','Verdana','Geneva','Arial','Helvetica','DejaVu Sans','Bitstream Vera Sans','sans-serif']
''' Misuse the mathtext "mathcal" definition for the Unicode characters in Symbola '''
rcParams['mathtext.fontset'] = 'custom'
rcParams['mathtext.cal'] = 'Symbola'
rcParams['mathtext.default'] = 'regular'
nrows = args.graphs_per_page
ncols = 1
plotnum = 1
with FigurePDF(args.output_file) as pdf:
''' Overall averages for all data by hour '''
title = 'Overall Average Daily Glucose Summary'
data = {}
for row in rows:
mpdate = dt.datetime.combine(rows[0]['date'], row.get('date').time())
data[mdates.date2num(mpdate)] = {
'value' : row.get('value'),
'comment' : row.get('comment'),
}
''' Calculate max and min values for each 15 minute interval across the data set '''
intervals = calculate_max_min(rows)
intervaldata = {}
for i in intervals:
mpdate = dt.datetime.combine(rows[0]['date'], i)
intervaldata[mdates.date2num(mpdate)] = {
'max' : intervals.get(i).get('max'),
'min' : intervals.get(i).get('min'),
}
''' Calculate the mean and median blood glucose levels for the day '''
(g_mean, g_median, a_mean, a_median) = calculate_averages(data, args)
figure = Figure(figsize=args.pagesize)
canvas = FigureCanvas(figure)
ax = figure.add_subplot(nrows, ncols, plotnum)
ax.set_title(title)
figure.set_tight_layout({'pad':3})
''' Draw the target range '''
ax.axhspan(args.low, args.high, facecolor='#0072b2', edgecolor='#a8a8a8', alpha=0.2, zorder=5)
''' The maxmined curve of maximum and minimum values '''
generate_plot(intervaldata,
ax=ax,
transforms={'spline':False, 'maxmin':True},
args=args,
color='#979797',
alpha=0.5,
)
generate_plot(data,
ax=ax,
transforms={'bezier':True, 'avga1c':a_median, \
'color':[RED, BLUE, RED], 'boundaries':[0, args.low, args.high, GRAPH_MAX]},
args=args,
color=BLUE,
)
''' Save the graph to the output PDF if we're at the end of the page '''
pdf.savefig(figure)
ax.clear()
''' Overall averages for a week by hour '''
cnt = 0
for year in reversed(sorted(weeks.keys())):
for week in reversed(sorted(weeks[year].keys())):
''' Turn the year into a date (the first week of the year is the one containing January 4th) '''
time = dt.datetime.combine(dt.date(year, 1, 4), dt.time(0, 0, 0))
monday = time + dt.timedelta(days=-time.weekday(), weeks=week-1)
sunday = monday + dt.timedelta(days=6)
period = monday.strftime('%A, %-d %B %Y') + ' to ' + sunday.strftime('%A, %-d %B %Y');
title = 'Average Daily Glucose for ' + period
weekrows = []
for row in rows:
for dow in range(7):
day = monday + dt.timedelta(days=dow)
if row.get('date').date() == day.date():
weekrows.append(row)
data = {}
for row in weekrows:
mpdate = dt.datetime.combine(monday, row.get('date').time())
data[mdates.date2num(mpdate)] = {
'value' : row.get('value'),
'comment' : row.get('comment'),
}
intervals = calculate_max_min(weekrows)
intervaldata = {}
for i in intervals:
mpdate = dt.datetime.combine(monday.date(), i)
intervaldata[mdates.date2num(mpdate)] = {
'max' : intervals.get(i).get('max'),
'min' : intervals.get(i).get('min'),
}
''' Calculate the mean and median blood glucose levels for the day '''
(g_mean, g_median, a_mean, a_median) = calculate_averages(data, args)
if cnt % nrows == 0:
figure = Figure(figsize=args.pagesize)
canvas = FigureCanvas(figure)
plotnum = (cnt % nrows) + 1
ax = figure.add_subplot(nrows, ncols, plotnum)
ax.set_title(title)
figure.set_tight_layout({'pad':3})
''' Draw the target range '''
ax.axhspan(args.low, args.high, facecolor='#0072b2', edgecolor='#a8a8a8', alpha=0.2, zorder=5)
''' The maxmined curve of maximum and minimum values '''
generate_plot(intervaldata,
ax=ax,
transforms={'spline':False, 'maxmin':True, 'avga1c':a_median},
args=args,
color='#979797',
alpha=0.5,
)
generate_plot(data,
ax=ax,
transforms={'bezier':True, \
'color':[RED, BLUE, RED], 'boundaries':[0, args.low, args.high, GRAPH_MAX]},
args=args,
color=BLUE,
)
''' Save the graph to the output PDF if we're at the end of the page or at the end of the data '''
if (cnt + 1) % nrows == 0 or (cnt + 1) == totalweeks:
pdf.savefig(figure)
ax.clear()
cnt += 1
''' Daily graphs '''
cnt = 0
for day in reversed(sorted(days.keys())):
title = 'Daily Glucose Summary for ' + day.strftime('%A, %-d %B %Y')
data = {}
for row in rows:
if row.get('date').date() == day.date():
mpdate = dt.datetime.combine(day.date(), row.get('date').time())
data[mdates.date2num(mpdate)] = {
'value' : row.get('value'),
'comment' : row.get('comment'),
}
''' Calculate the mean and median blood glucose levels for the day '''
(g_mean, g_median, a_mean, a_median) = calculate_averages(data, args)
if cnt % nrows == 0:
figure = Figure(figsize=args.pagesize)
canvas = FigureCanvas(figure)
plotnum = (cnt % nrows) + 1
ax = figure.add_subplot(nrows, ncols, plotnum)
ax.set_title(title)
figure.set_tight_layout({'pad':3})
''' Draw the target range '''
ax.axhspan(args.low, args.high, facecolor='#0072b2', edgecolor='#a8a8a8', alpha=0.2, zorder=5)
generate_plot(data,
ax=ax,
transforms={'spline':True, 'label':True, 'avgglucose':g_median, 'avga1c':a_median},
args=args,
color=BLUE,
)
''' For max higher than target high '''
generate_plot(data,
ax=ax,
transforms={'spline':True, 'fill':True},
args=args,
)
''' Save the graph to the output PDF if we're at the end of the page '''
if (cnt + 1) % nrows == 0 or (cnt + 1) == totaldays:
pdf.savefig(figure)
ax.clear()
cnt += 1
return 1
def generate_plot(data, ax=None, transforms={}, args=[], **plot_args):
pp = pprint.PrettyPrinter(depth=6)
(x, y, z, p, q) = (list(), list(), list(), list(), list())
for (key, value) in sorted(data.items()):
# Time
a = key
if 'maxmin' in transforms:
# If a max and a min exists, initialise them to y and z
b = value.get('max')
c = value.get('min')
else:
# Glucose and comment
b = value.get('value')
c = value.get('comment', '')
x.append(a)
y.append(b)
z.append(c)
x = np.asarray(x)
y = np.asarray(y)
''' Don't convert z to a numpy array if it has text in it '''
if len(z) > 0 and isinstance(z[0], (int, float)):
z = np.asarray(z)
else:
z = np.asarray(z, dtype='unicode_')
''' Calculations the axis limits '''
firstminute = mdates.num2date(x[0]).replace(hour=0, minute=0, second=0, microsecond=0)
lastminute = mdates.num2date(x[-1]).replace(hour=23, minute=59, second=59, microsecond=59)
x_min = mdates.date2num(firstminute)
x_max = mdates.date2num(lastminute)
ax.set_xlim(x_min, x_max)
ax.set_ylim(0, GRAPH_MAX)
''' Calculate the time intervals in 2 hour segments '''
xtimes = []
time = firstminute
while time < lastminute:
xtimes.append(time)
time += dt.timedelta(hours=2)
''' Formatting for axis labels, using date calculations from above '''
ax.set_xlabel('Time', fontsize=9)
ax.set_xbound(firstminute, lastminute)
ax.grid(axis='x', color = '#f0f0f0', zorder=1)
ax.set_xticks(xtimes)
ax.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M"))
ax.xaxis.set_ticks_position('none')
for tick in ax.xaxis.get_major_ticks():
tick.label1.set_horizontalalignment('left')
ax.set_ylabel('Blood Glucose (' + args.units + ')', fontsize=9)
ax.set_ybound(0, GRAPH_MAX)
ax.grid(axis='y', color = '#d0d0d0', linestyle = (1,(0.5,2)), zorder=1)
ax.set_yticks([a for a in range(0, GRAPH_MAX, 2)])
ax.yaxis.set_major_formatter(mticker.FormatStrFormatter("%d"))
ax.yaxis.set_ticks_position('none')
if 'maxmin' in transforms and transforms['maxmin'] is True:
maxmin = True
else:
maxmin = False
''' Process points to apply smoothing and other fixups '''
for transform in transforms:
if transform == 'linear' and transforms[transform] is True:
''' Use SciPy's interp1d for linear transforming '''
if not maxmin:
f = interpolate.interp1d(x, y, kind='linear')
x = np.linspace(x.min(), x.max(), 50) # 50 is number of points to make between x.max & x.min
y = f(x)
elif transform == 'spline' and transforms[transform] is True:
''' Use SciPy's UnivariateSpline for transforming (s is transforming factor) '''
if not maxmin:
curve = interpolate.UnivariateSpline(x=x, y=y, k=3, s=8)
y = curve(x)
#else:
# TODO Apply spline to each curve?
#curve1 = interpolate.UnivariateSpline(x=x, y=y, k=3, s=5)
#curve2 = interpolate.UnivariateSpline(x=x, y=z, k=3, s=5)
#y = curve1(x)
#z = curve2(x)
elif transform == 'bezier' and transforms[transform] is True:
''' Create bezier function for transforming (s is transforming factor) '''
def bezier(points, s=100):
n = len(points)
b = [binom(n - 1, i) for i in range(n)]
r = np.arange(n)
for t in np.linspace(0, 1, s):
u = np.power(t, r) * np.power(1 - t, n - r - 1) * b
yield t, u @ points
''' The binomial calculation for the bezier curve overflows with arrays of 1020 or more elements,
For large arrays, get a smaller slice of the full array.
Do this by removing every nth element from the array '''
n = 5
while len(p) > 1000:
p = np.delete(p, np.arange(0, len(p), n), axis=0)
while len(x) > 1000:
x = np.delete(x, np.arange(0, len(x), n), axis=0)
y = np.delete(y, np.arange(0, len(y), n), axis=0)
if not maxmin:
curve = np.array([c for _, c in bezier(np.array([x,y]).T, 250)])
(x, y) = (curve[:,0], curve[:,1])
#else:
# TODO Apply bezier to each curve? Will this work for x?
#while len(q) > 1000:
# q = np.delete(q, np.arange(0, len(q), n), axis=0)
#curve1 = np.array([c for _, c in bezier(p[:], 250)])
#curve2 = np.array([c for _, c in bezier(q[:], 250)])
#(x, y) = (curve1[:,0], curve1[:,1])
#(x, z) = (curve2[:,0], curve2[:,1])
''' Add the mean or median glucose and A1c values '''
if transform == 'avgglucose' and isinstance(transforms[transform], (int, float)):
ax.annotate('Median glucose: %.1f%s' % (round(transforms['avgglucose'], 1), args.units), fontsize=9, \
xy=(0.95, 0.85), xycoords='axes fraction', verticalalignment='top', horizontalalignment='right', \
zorder=40, bbox=dict(facecolor=GREEN, edgecolor='#009e73', alpha=0.7, pad=8), \
)
if transform == 'avga1c' and isinstance(transforms[transform], (int, float)):
ax.annotate('Median HbA1c: %.1f%%' % round(transforms['avga1c'], 1), fontsize=9, \
xy=(0.05, 0.85), xycoords='axes fraction', verticalalignment='top', horizontalalignment='left', \
zorder=40, bbox=dict(facecolor=BOXYELLOW, edgecolor='#e69f00', alpha=0.7, pad=8), \
)
# XXX At present, backend_pdf does not parse unicode correctly, and all recent
# unicode chacters that lack proper glyph names are massed together and printed
# as the same character
if transform == 'label' and transforms[transform] is True:
for a, b, label in zip(x, y, z):
if len(label) > 0:
#print(label)
ax.annotate(
label,
xy=(a, GRAPH_MAX-6),
rotation=45,
zorder=25,
)
''' Create a line coloured according to the list in transforms['color'] '''
if transform == 'boundaries' and 'color' in transforms:
cmap = ListedColormap(transforms['color'])
norm = BoundaryNorm(transforms['boundaries'], cmap.N)
''' create an array of points on the plot, and split into segments '''
p = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([p[:-1], p[1:]], axis=1)
''' Colour the line according to the values in norm and the colours in cmap '''
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(y)
if 'boundaries' in transforms and 'color' in transforms:
ax.add_collection(lc)
elif 'fill' in transforms and transforms['fill'] is True:
z = np.clip(y, None, args.high)
ax.fill_between(x, y, z, interpolate=True, facecolor=YELLOW, alpha=0.7, zorder=12, **plot_args)
z = np.clip(y, args.low, None)
ax.fill_between(x, y, z, interpolate=True, facecolor=RED, alpha=0.7, zorder=12, **plot_args)
elif maxmin:
ax.fill_between(x, y, z, interpolate=True, zorder=10, **plot_args)
else:
ax.plot(x, y, '-', zorder=20, **plot_args)
return ax
def parse_entry(data, icons, fmt='%Y-%m-%d %H:%M:%S'):
''' Parse a row to create the icons and modify the timestamp
Args:
data: a dict containing the entries 'timestamp' and 'comment'
icons: bool indicating whether to display food/injection icons on the graph
date_format: the format of the timestamp in data
Returns:
data: the modified dict
Raises:
ValueError if an incorrectly-formatted date exists in data['timestamp']
'''
if icons:
# Ignore comments that aren't relevant
rrelevant = re.compile('(Food|Rapid-acting insulin|Long-acting insulin)(?: \((.*?)\))', flags=re.IGNORECASE)
rduplicate = re.compile('.*?(\N{SYRINGE})')
comment_parts = []
for comment_part in data.get('comment').split('; '):
relevant = rrelevant.search(comment_part)
if relevant is not None:
ctype = relevant.group(1)
cvalue = relevant.group(2)
cvalue = re.sub('(\d+)(\.\d+)?', '\g<1>', cvalue)
if re.search('Rapid', ctype) is not None:
cvalue += 'R'
if re.search('Long', ctype) is not None:
cvalue += 'L'
# XXX At present, backend_pdf does not parse unicode correctly, and all recent
# unicode chacters that lack proper glyph names are massed together and printed
# as the same character
# XXX Alternatives include replacing the glyph with an image, or a Path
ctype = re.sub('Food', '$\mathcal{\N{GREEN APPLE}}$', ctype, flags=re.IGNORECASE)
ctype = re.sub('Rapid-acting insulin', '$\mathcal{\N{SYRINGE}}^\mathrm{'+cvalue+'}$', ctype, flags=re.IGNORECASE)
ctype = re.sub('Long-acting insulin', '$\mathcal{\N{SYRINGE}}^\mathrm{'+cvalue+'}$', ctype, flags=re.IGNORECASE)
#ctype = re.sub('Rapid-acting insulin', '$\mathcal{💉}$', ctype, flags=re.IGNORECASE)
#ctype = re.sub('Long-acting insulin', '$\mathcal{💉}$', ctype, flags=re.IGNORECASE)
idx = [i for i, x in enumerate(comment_parts) if rduplicate.search(x)]
if idx:
comment_parts[idx[0]] = re.sub('^(.*?\d+\S?)(.*)$', '\g<1>/'+cvalue+'\g<2>', comment_parts[idx[0]])
else:
comment_parts.append(ctype)
comment = ''.join(comment_parts)
data['comment'] = comment
else:
data['comment'] = ''
''' Convert timestamp to ISO8601 (by default, at least), and store datetime object '''
try:
date = dt.datetime.strptime(data.get('timestamp'), fmt)
data['date'] = date
except ValueError:
raise ValueError('Invalid date: %s (should be of format %s)' % (data.get('timestamp'), fmt))
data['timestamp'] = date.strftime('%Y-%m-%dT%H:%M:%S')
''' Convert value from string to float '''
data['value'] = float(data.get('value'))
return data
def list_days_and_weeks(data, trim_weeks=192):
''' Create a dictionary of the days and weeks that occur in the CSV
Args:
data: a dict containing a 'timestamp' entry
trim_weeks: the minimum number of entries a week should have in order to be considered for
a weekly average graph. A reading taken every 15 minutes over two days would yield 192 readings.
Returns:
seendays: a dict containing all days in data
seenweeks: a dict containing all weeks in data, subdivided by year
'''
seenweeks = {}
seendays = {}
for d in data:
date = d.get('date')
day = dt.datetime.combine(date.date(), dt.time.min)
(year, week, weekday) = date.isocalendar()
if not year in seenweeks:
seenweeks[year] = {}
if not week in seenweeks[year]:
seenweeks[year][week] = 0
else:
seenweeks[year][week] += 1
if not day in seendays:
seendays[day] = 1
else:
seendays[day] += 1
''' Remove weeks for which there is less than two days of results in that week. '''
''' Note that if we smooth the data to generate a reading every 10 minutes, there will be 144 readings per day '''
editedweeks = dict(seenweeks)
for year in seenweeks:
editedweeks = dict(seenweeks[year])
for week in seenweeks[year]:
if seenweeks[year][week] < trim_weeks:
del editedweeks[week]
seenweeks[year] = dict(editedweeks)
return (seendays, seenweeks)
def calculate_averages(data, args):
''' Return a dictionary with the maximum and mimimum values for each time interval
Args:
data: a dict with the element 'value'
args: a dict with the elements ;
Returns:
g_mean: The mean of all blood glucose 'value' elements
g_median: The median of all blood glucose 'value' elements
a_mean: The blood glucose mean converted to an HbA1c value
a_median: The blood glucose median converted to an HbA1c value
Raises:
ValueError if the blood glucose units can't be parsed or are unknown.
'''
g_mean = round(np.mean([data[k].get('value', 0) for k in data]), 1)
g_median = round(np.median([data[k].get('value', 0) for k in data]), 1)
if args.units == UNIT_MGDL:
a_median = (g_median + 46.7) / 28.7
a_mean = (g_mean + 46.7) / 28.7
elif args.units == UNIT_MMOLL:
a_median = (g_median + 2.59) / 1.59
a_mean = (g_mean + 2.59) / 1.59
else:
raise ValueError('Unknown blood glucose units for HbA1c calculations')
return (g_mean, g_median, a_mean, a_median)
def calculate_max_min(data):
''' Return a dictionary with the maximum and mimimum values for each time interval
Args:
datas: a dict with elements 'timestamp' and 'value'
Returns:
intervals: a dictionary of minimum and maximum values for a a time period
Raises:
ValueError if an incorrectly-formatted date exists in data['timestamp']
'''
intervals = {}
for d in data:
date = d.get('date')
date = date.replace(minute=int(date.minute/INTERVAL)*INTERVAL, second=0, microsecond=0, tzinfo=None)
time = date.time()
if not time in intervals:
intervals[time] = {}
intervals[time]['min'] = d.get('value')
intervals[time]['max'] = d.get('value')
if intervals[time]['min'] < d.get('value'):
intervals[time]['min'] = d.get('value')
if intervals[time]['max'] > d.get('value'):
intervals[time]['max'] = d.get('value')
return intervals
def fill_gaps(rows, interval, maxinterval=dt.timedelta(days=1)):
''' Fill in time gaps that may exist in a set of rows, in order to smooth drawn curves and fills
Args:
rows: a dict containing a 'date' entry (the result of parse_entry())
interval: a datetime.timedelta object that defines the maximum distance allowed between two entries
maxinterval: a datetime.timedelta object that defines the maximum amount of time, over which we ignore
the difference between two consecutive entries
Returns:
filledrows: a dict containing the rows with inserted items.
'''
filledrows = []
for i, row in enumerate(rows):
filledrows.append(row)
''' Don't check the distance between the last value and anything! '''
if i >= len(rows)-1:
continue
''' If the next row has a time gap, create new rows to insert '''
if rows[i+1]['date'] - rows[i]['date'] > interval and \
rows[i+1]['date'] - rows[i]['date'] < maxinterval:
n = (rows[i+1]['date'] - rows[i]['date'])//interval
start = mdates.date2num(rows[i]['date'])
end = mdates.date2num(rows[i+1]['date'])
lower = rows[i]['value']
upper = rows[i+1]['value']
''' Calculate an range for each interval, assuming a straight line between the start and
end of the gap.
Use n+2 so we can remove the first and last value which overlap with existing values '''
periods = np.linspace(start, end, n+2)
periods = periods[1:n+1]
values = np.linspace(lower, upper, n+2)
values = values[1:n+1]
for j, val in enumerate(values):
period = mdates.num2date(periods[j])
period = period.replace(microsecond=0, tzinfo=None)
item = {
'date': period,
'meal': '',
'value': float('%.2f' % val),
'comment': '',
'timestamp': period.strftime('%Y-%m-%dT%H:%M:%S'),
'measure_method': 'Estimate',
}
filledrows.append(item)
return filledrows
def verify_pagesize(pagesize = None):
''' Check the page size '''
if re.search('a4', pagesize, flags=re.IGNORECASE) is not None:
pagesize = (11.69, 8.27)
elif re.search('letter', pagesize, flags=re.IGNORECASE) is not None:
pagesize = (11, 8.5)
elif re.search('\d+(cm|in),\d+/', pagesize, flags=re.IGNORECASE) is not None:
''' Do nothing '''
else: # A4 size default
pagesize = (11.69, 8.27)
return pagesize
def verify_units(units = None, high = None, low = None):
''' Standardise units for output and for the A1c calculations '''
if re.search('mg', units, flags=re.IGNORECASE) is not None:
units = UNIT_MGDL
elif re.search('mg', units, flags=re.IGNORECASE) is not None:
units = UNIT_MMOLL
elif isinstance(high, (int, float)) or isinstance(low, (int, float)):
''' If units are not specified by the arguments or calling function, let's assume they are
mg/dL if the high is more than 35 or the low more than 20 '''
if (isinstance(high, (int, float)) and (high > 35) or
isinstance(low, (int, float)) and (low > 20)):
units = UNIT_MGDL
else:
units = UNIT_MMOLL
else:
''' Leave empty so we can auto-detect based on input '''
units = ''
return units
def parse_arguments():
parser = argparse.ArgumentParser(description='Convert a CSV file containing blood sugar measurements into graphs')
parser.add_argument(
'--input', '-i', action='store', required=True, type=str, dest='input_file',
help='Select the CSV file exported by glucometerutils.')
parser.add_argument(
'--output', '-o', action='store', type=str, dest='output_file',
help=('Select the path for the output file.'))
parser.add_argument(
'--pagesize', action='store', required=False, type=str, default='',
help=('Page size of output PDF (currently, letter or A4).'))
parser.add_argument(
'--graphs', action='store', required=False, type=int, default=2, dest='graphs_per_page',
help=('Number of graphs to print per page.'))
parser.add_argument(
'--icons', action='store_true', required=False, default=True,
help=('Print food and injection indicators (default: true).'))
parser.add_argument(
'--units', action='store', required=False, type=str,
default='mmol/L', choices=(UNIT_MGDL, UNIT_MMOLL),
help=('The measurement units used (mmol/L or mg/dL).'))
parser.add_argument(
'--low', action='store', required=False, type=float, default=4,
help=('Minimum of target glucose range.'))
parser.add_argument(
'--high', action='store', required=False, type=float, default=8,
help=('Maximum of target glucose range.'))
args = parser.parse_args()
args.pagesize = verify_pagesize(args.pagesize)
args.units = verify_units(args.units, args.high, args.low)
''' Ensure we have a valid number of graphs_per_page '''
if not isinstance(args.graphs_per_page, int) or args.graphs_per_page < 1:
args.graphs_per_page = 2
return args
def from_csv(csv_file, newline=''):
'''Returns the reading as a formatted comma-separated value string.'''
data = csv.reader(csv_file, delimiter=',', quotechar='"')
fields = [ 'timestamp', 'value', 'meal', 'measure_method', 'comment' ]
rows = []
for row in data:
item = dict(zip(fields, row))
rows.append(item)
return rows
if __name__ == "__main__":
main()
# vim: set expandtab shiftwidth=2 softtabstop=2 tw=0 :