africat/africat/categorise.py

404 lines
12 KiB
Python
Executable File

#!/usr/bin/python
import argparse
import os
import sys
import pprint
import re
import string
import time
import warnings
# data manupulation
import csv
import random
import pandas as pd
import numpy as np
#from pandarallel import pandarallel
from tqdm import tqdm
# torch
import torch
import torchdata.datapipes as dp
import torchtext.transforms as T
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import Dataset, DataLoader
from torch import nn
story_num = 40 # XXX None for all
# Hyperparameters
EPOCHS = 10 # epoch
LR = 5 # learning rate
BATCH_SIZE = 64 # batch size for training
def read_csv(input_csv, rows=None, verbose=0):
if verbose > 0:
with open(input_csv, 'r', encoding="utf-8") as f:
data = pd.concat(
[chunk for chunk in tqdm(
pd.read_csv(f,
encoding="utf-8",
quoting=csv.QUOTE_ALL,
nrows=rows,
chunksize=50,
),
desc='Loading data'
)])
else:
with open(input_csv, 'r', encoding="utf-8") as f:
data = pd.read_csv(f,
encoding="utf-8",
quoting=csv.QUOTE_ALL,
nrows=rows,
)
data.dropna(axis='index', inplace=True)
#print(data)
#sys.exit(0)
return data
'''
Create Training and Validation sets
'''
def split_dataset(data, verbose=0):
# Create a list of ints till len of data
data_idx = list(range(len(data)))
np.random.shuffle(data_idx)
# Get indexes for validation and train
split_percent = 0.05
num_valid = int(len(data) * split_percent)
#num_tests = int(len(data) * split_percent)
#train_idx = data_idx[num_valid:-num_tests]
train_idx = data_idx[num_valid:]
valid_idx = data_idx[:num_valid]
#tests_idx = data_idx[-num_tests:]
if verbose > 0:
print("Length of train_data: {}".format(len(train_idx)))
print("Length of valid_data: {}".format(len(valid_idx)))
#print("Length of tests_data: {}".format(len(tests_idx)))
# Create the training and validation sets, as dataframes
train_data = data.iloc[train_idx].reset_index().drop('index', axis=1)
valid_data = data.iloc[valid_idx].reset_index().drop('index', axis=1)
#tests_data = data.iloc[tests_idx].reset_index().drop('index', axis=1)
#return(train_data, valid_data, tests_data)
return(train_data, valid_data)
'''
Create a dataset that builds a tokenised vocabulary,
and then, as each row is accessed, transforms it into
'''
class TextCategoriesDataset(Dataset):
''' Dataset of Text and Categories '''
def __init__(self, df, text_column, cats_column, lang_column, transform=None, verbose=0):
'''
Arguments:
df (panda.Dataframe): csv content, loaded as dataframe
text_column (str): the name of the column containing the text
cats_column (str): the name of the column containing
semicolon-separated categories
text_column (str): the name of the column containing the language
transform (callable, optional): Optional transform to be
applied on a sample.
'''
self.df = df
self.transform = transform
self.verbose = verbose
self.text = self.df[text_column]
self.cats = self.df[cats_column]
self.lang = self.df[lang_column]
# index-to-token dict
# <pad> : padding, used for padding the shorter sentences in a batch
# to match the length of longest sentence in the batch
# <sos> : start of sentence token
# <eos> : end of sentence token
# <unk> : unknown token: words which are not found in the vocab are
# replaced by this token
self.itos = {0: '<pad>', 1:'<sos>', 2:'<eos>', 3: '<unk>'}
# token-to-index dict
self.stoi = {k:j for j, k in self.itos.items()}
# Create vocabularies upon initialisation
self.text_vocab = build_vocab_from_iterator(
[self.textTokens(text) for i, text in self.df[text_column].items()],
min_freq=2,
specials= self.itos.values(),
special_first=True
)
self.text_vocab.set_default_index(self.text_vocab['<unk>'])
#print(self.text_vocab.get_itos())
self.cats_vocab = build_vocab_from_iterator(
[self.catTokens(cats) for i, cats in self.df[cats_column].items()],
min_freq=1,
specials= self.itos.values(),
special_first=True
)
self.cats_vocab.set_default_index(self.cats_vocab['<unk>'])
#print(self.cats_vocab.get_itos())
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# Enable use as a plain iterator
if idx not in self.df.index:
raise(StopIteration)
if torch.is_tensor(idx):
idx = idx.tolist()
# Get the raw data
text = self.text[idx]
cats = self.cats[idx]
lang = self.lang[idx]
if self.transform:
text, cats = self.transform(text, cats)
# Numericalise by applying transforms
return (
self.getTransform(self.text_vocab)(self.textTokens(text)),
self.getTransform(self.cats_vocab)(self.catTokens(cats)),
)
@staticmethod
def textTokens(text):
if isinstance(text, str):
return [word for word in text.split()]
@staticmethod
def catTokens(cats):
if isinstance(cats, str):
return [cat for cat in cats.split(';')]
elif isinstance(cats, list):
return [cat for cat in cats]
def getTransform(self, vocab):
'''
Create transforms based on given vocabulary. The returned transform
is applied to a sequence of tokens.
'''
return T.Sequential(
# converts the sentences to indices based on given vocabulary
T.VocabTransform(vocab=vocab),
# Add <sos> at beginning of each sentence. 1 because the index
# for <sos> in vocabulary is 1 as seen in previous section
T.AddToken(1, begin=True),
# Add <eos> at beginning of each sentence. 2 because the index
# for <eos> in vocabulary is 2 as seen in previous section
T.AddToken(2, begin=False)
)
'''
Now that we have a dataset, let's create dataloader,
which can batch, shuffle, and load the data in parallel
'''
class CollateBatch:
'''
We need to pad shorter sentences in a batch to make all the sequences
in a batch of equal length. We can do this a collate_fn callback class,
which returns a tensor
'''
def __init__(self, pad_idx):
self.pad_idx = pad_idx
def __call__(self, batch):
# T.ToTensor(0) returns a transform that converts the sequence
# to a torch.tensor and also applies padding.
#
# pad_idx is passed to the constructor to specify the index of
# the "<pad>" token in the vocabulary.
return (
T.ToTensor(self.pad_idx)(list(batch[0])),
T.ToTensor(self.pad_idx)(list(batch[1])),
)
class TextClassificationModel(nn.Module):
def __init__(self, input_size, output_size, verbose):
super().__init__()
def forward(self, x):
return x
def train(dataloader):
model.train()
total_acc, total_count = 0, 0
log_interval = 500
start_time = time.time()
for idx, (label, text) in enumerate(dataloader):
optimizer.zero_grad()
predicted_label = model(text)
loss = criterion(predicted_label, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
total_acc += (predicted_label.argmax(1) == label).sum().item()
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print(
"| epoch {:3d} | {:5d}/{:5d} batches "
"| accuracy {:8.3f}".format(
epoch, idx, len(dataloader), total_acc / total_count
)
)
total_acc, total_count = 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval()
total_acc, total_count = 0, 0
with torch.no_grad():
for idx, (label, text) in enumerate(dataloader):
predicted_label = model(text)
loss = criterion(predicted_label, label)
total_acc += (predicted_label.argmax(1) == label).sum().item()
total_count += label.size(0)
return total_acc / total_count
def main():
parser = argparse.ArgumentParser(
description='Classify text data according to categories',
add_help=True,
)
parser.add_argument('action',
help='train or classify')
parser.add_argument('--input', '-i',
required=True,
help='path of CSV file containing dataset')
parser.add_argument('--model', '-m',
#required=True, # XXX
help='path to training model')
parser.add_argument('--verbose', '-v',
type=int, nargs='?',
const=1, # Default value if -v is supplied
default=0, # Default value if -v is not supplied
help='print debugging')
args = parser.parse_args()
if args.action != 'train' and args.action != 'classify':
print("ERROR: train or classify data")
sys.exit(1)
if args.action == 'classify' and s.path.isfile(model_storage) is None:
print("No model found for classification; running training instead")
args.action = 'train'
if os.path.isfile(args.input) is False:
print(f"{args.input} is not a valid file")
sys.exit(1)
data = read_csv(input_csv=args.input, rows=story_num, verbose=args.verbose)
train_data, valid_data, = split_dataset(data, verbose=args.verbose)
'''
dataset = TextCategoriesDataset(df=data,
text_column="content",
cats_column="categories",
lang_column="language",
verbose=args.verbose,
)
'''
train_dataset = TextCategoriesDataset(df=train_data,
text_column="content",
cats_column="categories",
lang_column="language",
verbose=args.verbose,
)
valid_dataset = TextCategoriesDataset(df=valid_data,
text_column="content",
cats_column="categories",
lang_column="language",
verbose=args.verbose,
)
#print(dataset[2])
#for text, cat in enumerate(valid_dataset):
# print(text, cat)
#sys.exit(0)
# Get cpu, gpu or mps device for training.
# Move tensor to the NVIDIA GPU if available
device = (
"cuda" if torch.cuda.is_available()
else "xps" if hasattr(torch, "xpu") and torch.xpu.is_available()
else "mps" if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
'''
dataloader = DataLoader(dataset,
batch_size=4,
shuffle=True,
num_workers=0,
collate_fn=CollateBatch(pad_idx=dataset.stoi['<pad>']),
)
'''
train_dataloader = DataLoader(train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0,
collate_fn=CollateBatch(pad_idx=train_dataset.stoi['<pad>']),
)
valid_dataloader = DataLoader(valid_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0,
collate_fn=CollateBatch(pad_idx=valid_dataset.stoi['<pad>']),
)
#for i_batch, sample_batched in enumerate(dataloader):
# print(i_batch, sample_batched[0], sample_batched[1])
#sys.exit(0)
num_class = len(set([cats for key, cats, text, lang in train_data.values]))
input_size = len(train_dataset.text_vocab)
output_size = len(train_dataset.cats_vocab)
emsize = 64
model = TextClassificationModel(input_size, output_size, args.verbose).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
for epoch in range(1, EPOCHS + 1):
epoch_start_time = time.time()
train(train_dataloader)
accu_val = evaluate(valid_dataloader)
if total_accu is not None and total_accu > accu_val:
scheduler.step()
else:
total_accu = accu_val
print("-" * 59)
print(
"| end of epoch {:3d} | time: {:5.2f}s | "
"valid accuracy {:8.3f} ".format(
epoch, time.time() - epoch_start_time, accu_val
)
)
print("-" * 59)
print("Checking the results of test dataset.")
accu_test = evaluate(test_dataloader)
print("test accuracy {:8.3f}".format(accu_test))
return
if __name__ == "__main__":
main()