Clean up some minor issues (like iterating over the DataSet) & simplify
This commit is contained in:
parent
235c58f3c5
commit
701c28353d
@ -24,7 +24,7 @@ from torchtext.vocab import build_vocab_from_iterator
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Classify text data according to categories',
|
||||
description='Classify text data according to categories',
|
||||
add_help=True,
|
||||
)
|
||||
parser.add_argument('action', help='train or classify')
|
||||
@ -64,27 +64,22 @@ data.dropna(axis='index', inplace=True)
|
||||
#sys.exit(0)
|
||||
|
||||
'''
|
||||
#######################################################
|
||||
# Create Training and Validation sets
|
||||
#######################################################
|
||||
|
||||
# create a list of ints till len of data
|
||||
Create Training and Validation sets
|
||||
'''
|
||||
# Create a list of ints till len of data
|
||||
data_idx = list(range(len(data)))
|
||||
np.random.shuffle(data_idx)
|
||||
|
||||
# get indexes for validation and train
|
||||
val_frac = 0.1 # precentage of data in validation set
|
||||
val_split_idx = int(len(data)*val_frac) # index on which to split (10% of data)
|
||||
val_idx, train_idx = data_idx[:val_split_idx], data_idx[val_split_idx:]
|
||||
print('len of train: ', len(train_idx))
|
||||
print('len of val: ', len(val_idx))
|
||||
# Get indexes for validation and train
|
||||
split_percent = 0.95
|
||||
num_train = int(len(data) * split_percent)
|
||||
valid_idx, train_idx = data_idx[num_train:], data_idx[:num_train]
|
||||
print("Length of train_data: {}".format(len(train_idx)))
|
||||
print("Length of valid_data: {}".format(len(valid_idx)))
|
||||
|
||||
# create the training and validation sets, as dataframes
|
||||
train_data = data.iloc[train_idx].reset_index().drop('index',axis=1)
|
||||
valid_data = data.iloc[val_idx].reset_index().drop('index',axis=1)
|
||||
|
||||
# Next, we create Pytorch Datasets and Dataloaders for these dataframes
|
||||
'''
|
||||
# Create the training and validation sets, as dataframes
|
||||
train_data = data.iloc[train_idx].reset_index().drop('index', axis=1)
|
||||
valid_data = data.iloc[valid_idx].reset_index().drop('index', axis=1)
|
||||
|
||||
|
||||
'''
|
||||
@ -118,7 +113,7 @@ class TextCategoriesDataset(Dataset):
|
||||
# replaced by this token
|
||||
self.itos = {0: '<pad>', 1:'<sos>', 2:'<eos>', 3: '<unk>'}
|
||||
# token-to-index dict
|
||||
self.stoi = {k:j for j,k in self.itos.items()}
|
||||
self.stoi = {k:j for j, k in self.itos.items()}
|
||||
|
||||
# Create vocabularies upon initialisation
|
||||
self.text_vocab = build_vocab_from_iterator(
|
||||
@ -143,6 +138,10 @@ class TextCategoriesDataset(Dataset):
|
||||
return len(self.df)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Enable use as a plain iterator
|
||||
if idx not in self.df.index:
|
||||
raise(StopIteration)
|
||||
|
||||
if torch.is_tensor(idx):
|
||||
idx = idx.tolist()
|
||||
|
||||
@ -187,6 +186,7 @@ class TextCategoriesDataset(Dataset):
|
||||
T.AddToken(2, begin=False)
|
||||
)
|
||||
|
||||
'''
|
||||
dataset = TextCategoriesDataset(df=data,
|
||||
text_column="content",
|
||||
cats_column="categories",
|
||||
@ -200,9 +200,8 @@ valid_dataset = TextCategoriesDataset(df=valid_data,
|
||||
text_column="content",
|
||||
cats_column="categories",
|
||||
)
|
||||
'''
|
||||
#print(dataset[2])
|
||||
#for text, cat in dataset:
|
||||
#for text, cat in enumerate(valid_dataset):
|
||||
# print(text, cat)
|
||||
#sys.exit(0)
|
||||
|
||||
@ -212,7 +211,7 @@ valid_dataset = TextCategoriesDataset(df=valid_data,
|
||||
which can batch, shuffle, and load the data in parallel
|
||||
'''
|
||||
|
||||
class Collate:
|
||||
class CollateBatch:
|
||||
'''
|
||||
We need to pad shorter sentences in a batch to make all the sequences
|
||||
in a batch of equal length. We can do this a collate_fn callback class,
|
||||
@ -220,37 +219,55 @@ class Collate:
|
||||
'''
|
||||
def __init__(self, pad_idx):
|
||||
self.pad_idx = pad_idx
|
||||
|
||||
|
||||
def __call__(self, batch):
|
||||
# T.ToTensor(0) returns a transform that converts the sequence
|
||||
# to a torch.tensor and also applies padding.
|
||||
# pad_idx is passed to the constructor to specify the
|
||||
# index of the "<pad>" token in the vocabulary.
|
||||
#
|
||||
# pad_idx is passed to the constructor to specify the index of
|
||||
# the "<pad>" token in the vocabulary.
|
||||
return (
|
||||
T.ToTensor(self.pad_idx)(list(batch[0])),
|
||||
T.ToTensor(self.pad_idx)(list(batch[1])),
|
||||
)
|
||||
|
||||
|
||||
# Hyperparameters
|
||||
EPOCHS = 10 # epoch
|
||||
LR = 5 # learning rate
|
||||
BATCH_SIZE = 64 # batch size for training
|
||||
|
||||
# Get cpu, gpu or mps device for training.
|
||||
# Move tensor to the NVIDIA GPU if available
|
||||
device = (
|
||||
"cuda" if torch.cuda.is_available()
|
||||
else "xps" if hasattr(torch, "xpu") and torch.xpu.is_available()
|
||||
else "mps" if torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
print(f"Using {device} device")
|
||||
|
||||
|
||||
'''
|
||||
dataloader = DataLoader(dataset,
|
||||
batch_size=4,
|
||||
shuffle=True,
|
||||
num_workers=0,
|
||||
collate_fn=Collate(pad_idx=dataset.stoi['<pad>']),
|
||||
collate_fn=CollateBatch(pad_idx=dataset.stoi['<pad>']),
|
||||
)
|
||||
'''
|
||||
train_dataloader = DataLoader(train_dataset,
|
||||
batch_size=4,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True,
|
||||
num_workers=0,
|
||||
collate_fn=Collate(pad_idx=dataset.stoi['<pad>']),
|
||||
collate_fn=CollateBatch(pad_idx=train_dataset.stoi['<pad>']),
|
||||
)
|
||||
valid_dataloader = DataLoader(valid_dataset,
|
||||
batch_size=4,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True,
|
||||
num_workers=0,
|
||||
collate_fn=Collate(pad_idx=dataset.stoi['<pad>']),
|
||||
collate_fn=CollateBatch(pad_idx=valid_dataset.stoi['<pad>']),
|
||||
)
|
||||
'''
|
||||
#for i_batch, sample_batched in enumerate(dataloader):
|
||||
# print(i_batch, sample_batched[0], sample_batched[1])
|
||||
#sys.exit(0)
|
||||
|
Loading…
Reference in New Issue
Block a user